Bio Reaource World Home National BioResource Project Home
Japanese | English
Organism Category
Keyword
You can use "*" for a wildcard search.
Home >
Tabs(ALL, DNA, BLAST, GO, Taxonomy, DO, Reference) are clickable.
DNA
Gene Ontology
Taxonomy
Disease Ontology
Reference
Reference Related Resource Count : 51,804

Associated Resources List

210 items
Strain   195 items Go to list of Strain
DNA   15 items Go to list of DNA
Organism strain
Lotus Wild accession 4 Go to list
Experimental strains 3 Go to list
RILs 181 Go to list
EMS mutant strains 6 Go to list
Mesorhizobium loti STM mutant 1 Go to list
Organism DNA
Lotus BAC clones 2 Go to list
cDNA clones 9 Go to list
Vector 3 Go to list
LjFLcDNA clones 1 Go to list
Strain List 195 items 1 - 20 / 195
Lotus: MG-58  Available Miyazaki University
Category: Wild accession
Lotus: MG-113 Miyazaki University
Category: Wild accession
Lotus: MG-17  Available Miyazaki University
Category: Wild accession
Lotus: MG-15  Available Miyazaki University
Category: Wild accession
Lotus: Gifu B-129  Available Miyazaki University
Category: Experimental strains
Taxonomy : Lotus japonicus
Reference : Ampomah OY, Jensen JB. (2014) The trehalose utilization gene thuA ortholog in Mesorhizobium loti does not influence competitiveness for nodulation on Lotus spp. World J Microbiol Biotechnol 30(3) 1129-34
Masaru Bamba, Seishiro Aoki, Tadashi Kajita, Hiroaki Setoguchi, Yasuyuki Watano, Shusei Sato, Takashi Tsuchimatsu (2020) Massive rhizobial genomic variation associated with partner quality in Lotus–Mesorhizobium symbiosis FEMS Microbiology Ecology 96
澤田有司 () マメ科植物の代謝システム解明を目指した質量分析プラットフォームの構築 大豆たん白質研究 13 139-144
Fukudome M, Shimokawa Y, Hashimoto S, Maesako Y, Uchi-Fukudome N, Niihara K, Osuki KI, Uchiumi T. (2021) Nitric Oxide Detoxification by Mesorhizobium loti Affects Root Nodule Symbiosis with Lotus japonicus. Microbes Environ 36(3)
Venice F, Chialva M, Domingo G, Novero M, Carpentieri A, Salvioli di Fossalunga A, Ghignone S, Amoresano A, Vannini C, Lanfranco L, Bonfante P. (2021) Symbiotic responses of Lotus japonicus to two isogenic lines of a mycorrhizal fungus differing in the presence/absence of an endobacterium. Plant J 108(6) 1547-1564
Ng JLP, Welvaert A, Wen J, Chen R, Mathesius U. (2020) The Medicago truncatula PIN2 auxin transporter mediates basipetal auxin transport but is not necessary for nodulation. J Exp Bot 71(4) 1562-1573
Vittozzi Y, Nadzieja M, Rogato A, Radutoiu S, Valkov VT, Chiurazzi M. (2021) The <i>Lotus japonicus NPF3.1</i> Is a Nodule-Induced Gene That Plays a Positive Role in Nodule Functioning. Front Plant Sci 12 688187
Xu Y, Liu F, Wu F, Zhao M, Zou R, Wu J, Li X. (2022) A novel SCARECROW-LIKE3 transcription factor <i>LjGRAS36</i> in <i>Lotus japonicus</i> regulates the development of arbuscular mycorrhizal symbiosis. Physiol Mol Biol Plants 28(3) 573-583
Lin J, Roswanjaya YP, Kohlen W, Stougaard J, Reid D. (2021) Nitrate restricts nodule organogenesis through inhibition of cytokinin biosynthesis in Lotus japonicus. Nat Commun 12(1) 6544
Fuentes-Romero F, Navarro-Gómez P, Ayala-García P, Moyano-Bravo I, López-Baena FJ, Pérez-Montaño F, Ollero-Márquez FJ, Acosta-Jurado S, Vinardell JM. (2022) The <i>nodD1</i> Gene of <i>Sinorhizobium fredii</i> HH103 Restores Nodulation Capacity on Bean in a <i>Rhizobium tropici</i> CIAT 899 <i>nodD1</i>/<i>nodD2</i> Mutant, but the Secondary Symbiotic Regulators <i>nolR</i>, <i>nodD2</i> or <i>syrM</i> Prevent HH103 to Nodulate with This Legume. Microorganisms 10(1)
Crosbie DB, Mahmoudi M, Radl V, Brachmann A, Schloter M, Kemen E, Marín M. (2022) Microbiome profiling reveals that Pseudomonas antagonises parasitic nodule colonisation of cheater rhizobia in Lotus. New Phytol 234(1) 242-255
Gong X, Jensen E, Bucerius S, Parniske M. (2022) A CCaMK/Cyclops response element in the promoter of Lotus japonicus calcium-binding protein 1 (CBP1) mediates transcriptional activation in root symbioses. New Phytol 235(3) 1196-1211
Handa Y, Nishide H, Takeda N, Suzuki Y, Kawaguchi M, Saito K. (2015) RNA-seq Transcriptional Profiling of an Arbuscular Mycorrhiza Provides Insights into Regulated and Coordinated Gene Expression in Lotus japonicus and Rhizophagus irregularis. Plant Cell Physiol 56(8) 1490-511
Fukai E, Yoshikawa M, Shah N, Sandal N, Miyao A, Ono S, Hirakawa H, Akyol TY, Umehara Y, Nonomura KI, Stougaard J, Hirochika H, Hayashi M, Sato S, Andersen SU, Okazaki K. (2022) Widespread and transgenerational retrotransposon activation in inter- and intraspecies recombinant inbred populations of Lotus japonicus. Plant J 111(5) 1397-1410
Yusaku Noda, Jun Furukawa, Nobuo Suzui, Yong-Gen Yin, Keita Matsuoka, Naoki Kawachi, Shinobu Satoh (2022) Characterization of zinc uptake and translocation visualized with positron-emitting 65Zn tracer and analysis of transport-related gene expression in two <i>Lotus japonicus</i> accessions Annals of Botany
Akashi T, Koshimizu S, Aoki T, Ayabe S. (2006) Identification of cDNAs encoding pterocarpan reductase involved in isoflavan phytoalexin biosynthesis in Lotus japonicus by EST mining. FEBS Lett 580(24) 5666-70
Madsen LH, Fukai E, Radutoiu S, Yost CK, Sandal N, Schauser L, Stougaard J. (2005) LORE1, an active low-copy-number TY3-gypsy retrotransposon family in the model legume Lotus japonicus. Plant J 44(3) 372-81
Hanyu M, Fujimoto H, Tejima K, Saeki K. (2009) Functional differences of two distinct catalases in Mesorhizobium loti MAFF303099 under free-living and symbiotic conditions. J Bacteriol 191(5) 1463-71
Ono N, Ishida K, Yamashino T, Nakanishi H, Sato S, Tabata S, Mizuno T. (2010) Genomewide characterization of the light-responsive and clock-controlled output pathways in Lotus japonicus with special emphasis of its uniqueness. Plant Cell Physiol 51(10) 1800-14
Sugiyama A, Linley PJ, Sasaki K, Kumano T, Yamamoto H, Shitan N, Ohara K, Takanashi K, Harada E, Hasegawa H, Terakawa T, Kuzuyama T, Yazaki K. (2011) Metabolic engineering for the production of prenylated polyphenols in transgenic legume plants using bacterial and plant prenyltransferases. Metab Eng 13(6) 629-37
Gossmann JA, Markmann K, Brachmann A, Rose LE, Parniske M. (2012) Polymorphic infection and organogenesis patterns induced by a Rhizobium leguminosarum isolate from Lotus root nodules are determined by the host genotype. New Phytol 196(2) 561-573
Bunsupa S, Katayama K, Ikeura E, Oikawa A, Toyooka K, Saito K, Yamazaki M. (2012) Lysine decarboxylase catalyzes the first step of quinolizidine alkaloid biosynthesis and coevolved with alkaloid production in leguminosae. Plant Cell 24(3) 1202-16
Fukudome M, Calvo-Begueria L, Kado T, Osuki K, Rubio MC, Murakami E, Nagata M, Kucho K, Sandal N, Stougaard J, Becana M, Uchiumi T. (2016) Hemoglobin LjGlb1-1 is involved in nodulation and regulates the level of nitric oxide in the Lotus japonicus-Mesorhizobium loti symbiosis. J Exp Bot 67(17) 5275-83
Jiménez-Guerrero I, Acosta-Jurado S, Medina C, Ollero FJ, Alias-Villegas C, Vinardell JM, Pérez-Montaño F, López-Baena FJ. (2020) The Sinorhizobium fredii HH103 type III secretion system effector NopC blocks nodulation with Lotus japonicus Gifu. J Exp Bot 71(19) 6043-6056
Liu M, Jia N, Li X, Liu R, Xie Q, Murray JD, Downie JA, Xie F. (2021) CERBERUS is critical for stabilization of VAPYRIN during rhizobial infection in Lotus japonicus. New Phytol 229(3) 1684-1700
Carbonnel S, Torabi S, Gutjahr C. (2021) <i>MAX2</i>-independent transcriptional responses to <i>rac-</i>GR24 in <i>Lotus japonicus</i> roots. Plant Signal Behav 16(1) 1840852
Akamatsu A, Nagae M, Nishimura Y, Romero Montero D, Ninomiya S, Kojima M, Takebayashi Y, Sakakibara H, Kawaguchi M, Takeda N. (2021) Endogenous gibberellins affect root nodule symbiosis via transcriptional regulation of NODULE INCEPTION in Lotus japonicus. Plant J 105(6) 1507-1520
Rae AE, Rolland V, White RG, Mathesius U. (2021) New methods for confocal imaging of infection threads in crop and model legumes. Plant Methods 17(1) 24
Villar I, Rubio MC, Calvo-Begueria L, Pérez-Rontomé C, Larrainzar E, Wilson MT, Sandal N, Mur LA, Wang L, Reeder B, Duanmu D, Uchiumi T, Stougaard J, Becana M. (2021) Three classes of hemoglobins are required for optimal vegetative and reproductive growth of Lotus japonicus: genetic and biochemical characterization of LjGlb2-1. J Exp Bot 72(22) 7778-7791
Nieva AS, Romero FM, Erban A, Carrasco P, Ruiz OA, Kopka J. (2021) Metabolic Profiling and Metabolite Correlation Network Analysis Reveal That <i>Fusarium solani</i> Induces Differential Metabolic Responses in <i>Lotus japonicus</i> and <i>Lotus tenuis</i> against Severe Phosphate Starvation. J Fungi (Basel) 7(9)
Du Y, Luo S, Zhao J, Feng Z, Chen X, Ren W, Liu X, Wang Z, Yu L, Li W, Qu Y, Liu J, Zhou L. (2021) Genome and transcriptome-based characterization of high energy carbon-ion beam irradiation induced delayed flower senescence mutant in Lotus japonicus. BMC Plant Biol 21(1) 510
Akamatsu A, Nagae M, Takeda N. (2022) The <i>CYCLOPS Response Element</i> in the <i>NIN</i> Promoter Is Important but Not Essential for Infection Thread Formation During <i>Lotus japonicus-</i>Rhizobia Symbiosis. Mol Plant Microbe Interact 35(8) 650-658
Chai Hao Chiu, Pawel Roszak, Martina Orvošová, Uta Paszkowski (2022) Arbuscular mycorrhizal fungi induce lateral root development in angiosperms via a conserved set of MAMP receptors Current Biology 32 4428-4437.e3
Hafijur Ruman, Yasuyuki Kawaharada (2022) A New Classification of Lysin Motif Receptor-Like Kinases in <i>Lotus japonicus</i> Plant and Cell Physiology
Mohammad Zarrabian, Jesús Montiel, Niels Sandal, Shaun Ferguson, Haojie Jin, Yen-Yu Lin, Verena Klingl, Macarena Marín, Euan K. James, Martin Parniske, Jens Stougaard, Stig U. Andersen (2022) A Promiscuity Locus Confers <i>Lotus burttii</i> Nodulation with Rhizobia from Five Different Genera Molecular Plant-Microbe Interactions® 35 1006-1017
Yusdar Mustamin, Turgut Yigit Akyol, Max Gordon, Andi Madihah Manggabarani, Yoshiko Isomura, Yasuko Kawamura, Masaru Bamba, Cranos Williams, Stig Uggerhøj Andersen, Shusei Sato (2023) <i>FER</i> and <i>LecRK</i> show haplotype-dependent cold-responsiveness and mediate freezing tolerance in <i>Lotus japonicus</i> Plant Physiology 191 1138-1152
Mingchao Huang, Mengru Yuan, Chunyu Sun, Meiru Li, Pingzhi Wu, Huawu Jiang, Guojiang Wu, Yaping Chen (2022) Roles of AGD2a in Plant Development and Microbial Interactions of Lotus japonicus International Journal of Molecular Sciences 23 6863
Akihiro Yamazaki, Kai Battenberg, Yoshikazu Shimoda, Makoto Hayashi (2022) NDR1/HIN1-Like Protein 13 Interacts with Symbiotic Receptor Kinases and Regulates Nodulation in <i>Lotus japonicus</i> Molecular Plant-Microbe Interactions® 35 845-856
Xiaolin Li, Miaoxia Liu, Min Cai, David Chiasson, Martin Groth, Anne B. Heckmann, Trevor L. Wang, Martin Parniske, J. Allan Downie, Fang Xie (2023) RPG interacts with E3-ligase CERBERUS to mediate rhizobial infection in Lotus japonicus PLOS Genetics 19 e1010621
Mun T, Małolepszy A, Sandal N, Stougaard J, Andersen SU. (2017) User Guide for the LORE1 Insertion Mutant Resource. Methods Mol Biol 1610 13-23
Imaizumi R, Sato S, Kameya N, Nakamura I, Nakamura Y, Tabata S, Ayabe S, Aoki T. (2005) Activation tagging approach in a model legume, Lotus japonicus. J Plant Res 118(6) 391-9
Unno Y, Okubo K, Wasaki J, Shinano T, Osaki M. (2005) Plant growth promotion abilities and microscale bacterial dynamics in the rhizosphere of Lupin analysed by phytate utilization ability. Environ Microbiol 7(3) 396-404
Sebastián Acosta-Jurado, Dulce-Nombre Rodríguez-Navarro, Yasuyuki Kawaharada, Miguel A. Rodríguez-Carvajal, Antonio Gil-Serrano, María E. Soria-Díaz, Francisco Pérez-Montaño, Juan Fernández-Perea, Yanbo Niu, Cynthia Alias-Villegas, Irene Jiménez-Guerrero, Pilar Navarro-Gómez, Francisco Javier López-Baena, Simon Kelly, Niels Sandal, Jens Stougaard, José E. Ruiz-Sainz, and José-María Vinardell () Sinorhizobium fredii HH103 nolR and nodD2 mutants gain capacity for infection thread invasion of Lotus japonicus Gifu and Lotus burttii Environmental Microbiology 21(5) 1718–1739
Günther C, Schlereth A, Udvardi M, Ott T. (2007) Metabolism of reactive oxygen species is attenuated in leghemoglobin-deficient nodules of Lotus japonicus. Mol Plant Microbe Interact 20(12) 1596-603
Fukai E, Dobrowolska AD, Madsen LH, Madsen EB, Umehara Y, Kouchi H, Hirochika H, Stougaard J. (2008) Transposition of a 600 thousand-year-old LTR retrotransposon in the model legume Lotus japonicus. Plant Mol Biol 68(6) 653-63
Maekawa-Yoshikawa M, Müller J, Takeda N, Maekawa T, Sato S, Tabata S, Perry J, Wang TL, Groth M, Brachmann A, Parniske M. (2009) The temperature-sensitive brush mutant of the legume Lotus japonicus reveals a link between root development and nodule infection by rhizobia. Plant Physiol 149(4) 1785-96
Saito S, Motawia MS, Olsen CE, Møller BL, Bak S. (2012) Biosynthesis of rhodiocyanosides in Lotus japonicus: rhodiocyanoside A is synthesized from (Z)-2-methylbutanaloxime via 2-methyl-2-butenenitrile. Phytochemistry 77 260-7
Sugimura Y, Saito K. (2017) Transcriptional profiling of arbuscular mycorrhizal roots exposed to high levels of phosphate reveals the repression of cell cycle-related genes and secreted protein genes in Rhizophagus irregularis. Mycorrhiza 27(2) 139-146
Kusakabe S, Higasitani N, Kaneko T, Yasuda M, Miwa H, Okazaki S, Saeki K, Higashitani A, Sato S. (2020) Lotus Accessions Possess Multiple Checkpoints Triggered by Different Type III Secretion System Effectors of the Wide-Host-Range Symbiont Bradyrhizobium elkanii USDA61. Microbes Environ 35(1)
Masatsugu Hashiguchi, Shin-ichi Tsuruta, Ryo Akashi (2011) Morphological Traits of Lotus japonicus (Regal) Ecotypes Collected in Japan IBC 3(4) 1-7
Sandal N, Petersen TR, Murray J, Umehara Y, Karas B, Yano K, Kumagai H, Yoshikawa M, Saito K, Hayashi M, Murakami Y, Wang X, Hakoyama T, Imaizumi-Anraku H, Sato S, Kato T, Chen W, Hossain MS, Shibata S, Wang TL, Yokota K, Larsen K, Kanamori N, Madsen E, Radutoiu S, Madsen LH, Radu TG, Krusell L, Ooki Y, Banba M, Betti M, Rispail N, Skøt L, Tuck E, Perry J, Yoshida S, Vickers K, Pike J, Mulder L, Charpentier M, Müller J, Ohtomo R, Kojima T, Ando S, Marquez AJ, Gresshoff PM, Harada K, Webb J, Hata S, Suganuma N, Kouchi H, Kawasaki S, Tabata S, Hayashi M, Parniske M, Szczyglowski K, Kawaguchi M, Stougaard J. (2006) Genetics of symbiosis in Lotus japonicus: recombinant inbred lines, comparative genetic maps, and map position of 35 symbiotic loci. Mol Plant Microbe Interact 19(1) 80-91
K. TRUSH, A. ELIAŠOVÁ, M.D. MONJE-RUEDA, V. KOLARČÍK, M. BETTI, P. PAĽOVE-BALANG (2023) Chitosan is involved in elicitation of vestitol production in Lotus japonicus Biologia plantarum 67 75-86
Kawaguchi M, Imaizumi-Anraku H, Koiwa H, Niwa S, Ikuta A, Syono K, Akao S. (2002) Root, root hair, and symbiotic mutants of the model legume Lotus japonicus. Mol Plant Microbe Interact 15(1) 17-26
Nishimura R, Hayashi M, Wu GJ, Kouchi H, Imaizumi-Anraku H, Murakami Y, Kawasaki S, Akao S, Ohmori M, Nagasawa M, Harada K, Kawaguchi M. (2002) HAR1 mediates systemic regulation of symbiotic organ development. Nature 420(6914) 426-9
Asamizu E, Nakamura Y, Sato S, Tabata S. (2004) Characteristics of the Lotus japonicus gene repertoire deduced from large-scale expressed sequence tag (EST) analysis. Plant Mol Biol 54(3) 405-14
Imaizumi-Anraku H, Takeda N, Charpentier M, Perry J, Miwa H, Umehara Y, Kouchi H, Murakami Y, Mulder L, Vickers K, Pike J, Downie JA, Wang T, Sato S, Asamizu E, Tabata S, Yoshikawa M, Murooka Y, Wu GJ, Kawaguchi M, Kawasaki S, Parniske M, Hayashi M. (2005) Plastid proteins crucial for symbiotic fungal and bacterial entry into plant roots. Nature 433(7025) 527-31
Holligan D, Zhang X, Jiang N, Pritham EJ, Wessler SR. (2006) The transposable element landscape of the model legume Lotus japonicus. Genetics 174(4) 2215-28
Udvardi MK, Tabata S, Parniske M, Stougaard J. (2005) Lotus japonicus: legume research in the fast lane. Trends Plant Sci 10(5) 222-8
Feng X, Zhao Z, Tian Z, Xu S, Luo Y, Cai Z, Wang Y, Yang J, Wang Z, Weng L, Chen J, Zheng L, Guo X, Luo J, Sato S, Tabata S, Ma W, Cao X, Hu X, Sun C, Luo D. (2006) Control of petal shape and floral zygomorphy in Lotus japonicus. Proc Natl Acad Sci U S A 103(13) 4970-5
Asamizu E, Shimoda Y, Kouchi H, Tabata S, Sato S. (2008) A positive regulatory role for LjERF1 in the nodulation process is revealed by systematic analysis of nodule-associated transcription factors of Lotus japonicus. Plant Physiol 147(4) 2030-40
Masahiro Okada, Sungwook Park, Takahiro Koshizawa and Minoru Ueda. (2009) (R)-Eucomic acid, a leaf-opening factor of the model organism, Lotus japonicus. Tetrahedron 65 2136-2141
S. Okazaki, S. Okabe, M. Higashi, Y. Shimoda, S. Sato, S. Tabata, M. Hashiguchi, R. Akashi and K. Saeki. (2009) Identification and functional analysis of type III effector proteins in Mesorhizobium loti. Molecular Plant-Microbe Interaction
Kai K, Wakasa K, Miyagawa H. (2007) Metabolism of indole-3-acetic acid in rice: identification and characterization of N-beta-D-glucopyranosyl indole-3-acetic acid and its conjugates. Phytochemistry 68(20) 2512-22
Wang X, Sato S, Tabata S, Kawasaki S. (2008) A high-density linkage map of Lotus japonicus based on AFLP and SSR markers. DNA Res 15(5) 323-32
Hakoyama T, Watanabe H, Tomita J, Yamamoto A, Sato S, Mori Y, Kouchi H, Suganuma N. (2009) Nicotianamine synthase specifically expressed in root nodules of Lotus japonicus. Planta 230(2) 309-17
Maruya J, Saeki K. (2010) The bacA gene homolog, mlr7400, in Mesorhizobium loti MAFF303099 is dispensable for symbiosis with Lotus japonicus but partially capable of supporting the symbiotic function of bacA in Sinorhizobium meliloti. Plant Cell Physiol 51(9) 1443-52
Kai S, Tanaka H, Hashiguchi M, Iwata H, Akashi R (2010) Analysis of genetic diversity and morphological traits of Japanese Lotus japonicus for establishment of a core collection Breed Sci. 60(4) 436-446
Borjigin N, Furukawa K, Shimoda Y, Tabata S, Sato S, Eda S, Minamisawa K, Mitsui H. (2011) Identification of Mesorhizobium loti genes relevant to symbiosis by using signature-tagged mutants. Microbes Environ 26(2) 165-71
Amin AN, Hayashi S, Bartlem DG. (2014) Robust in vitro assay system for quantitative analysis of parasitic root-knot nematode infestation using Lotus japonicus. J Biosci Bioeng 118(2) 205-13
Makiko Mimura (2013) Genetic and phenotypic variation in Lotus japonicus (Regel) K. Larsen, a model legume species Canadian Journal of Plant Science Vol. 93, No. 3 435-444
Kojima T, Saito K, Oba H, Yoshida Y, Terasawa J, Umehara Y, Suganuma N, Kawaguchi M, Ohtomo R. (2014) Isolation and phenotypic characterization of Lotus japonicus mutants specifically defective in arbuscular mycorrhizal formation. Plant Cell Physiol 55(5) 928-41
Hideki Hirakawa, Terry Mun, Shusei Sato, Stig U. Andersen (2014) Legume and Lotus japonicus Databases The Lotus japonicus Genome IV 259-267
Hidenori Tanaka, Awatsaya Chotekajorn, Sayumi Kai, Genki Ishigaki, Masatsugu Hashiguchi, Ryo Akashi (2016) Determination of Genome Size, Chromosome Number, and Genetic Variation Using Inter-Simple Sequence Repeat Markers in Lotus spp. Cytologia 81(1) 95-102
Tsuno Y, Fujimatsu T, Endo K, Sugiyama A, Yazaki K. (2018) Soyasaponins: A New Class of Root Exudates in Soybean (Glycine max). Plant Cell Physiol 59(2) 366-375
Kunihiro S, Tanabe D, Niwa Y, Kitamura K, Abe J, Yamada T. (2017) Isolation and molecular characterization of a <i>Lotus japonicus</i><i>R2R3-MYB</i> subgroup 7 transcription factor gene. Plant Biotechnol (Tokyo) 34(1) 45-49
Shingo Hata, Risa Tsuda, Serina Kojima, Aiko Tanaka, Hiroshi Kouchi (2023) Both incompatible and compatible rhizobia inhabit the intercellular spaces of leguminous root nodules Plant Signaling & Behavior 18
Pramesti Istiandari, Shuhei Yasumoto, Hikaru Seki, Ery Odette Fukushima, Toshiya Muranaka (2023) Class I and II NADPH-cytochrome P450 reductases exhibit different roles in triterpenoid biosynthesis in Lotus japonicus Frontiers in Plant Science 14
Moritz Sexauer, Hemal Bhasin, Maria Schön, Elena Roitsch, Caroline Wall, Ulrike Herzog, Katharina Markmann (2023) A micro RNA mediates shoot control of root branching Nature Communications 14
Mitsutaka Fukudome, Haruka Ishizaki, Yuta Shimokawa, Tomoko Mori, Nahoko Uchi-Fukudome, Kamolchanok Umnajkitikorn, Ei-ichi Murakami, Toshiki Uchiumi, Masayoshi Kawaguchi (2023) Reactive Sulfur Species Produced by Cystathionine γ-lyase Function in the Establishment of <i>Mesorhizobium loti</i>–<i>Lotus japonicus</i> Symbiosis Microbes and Environments 38 n/a
Simon Kelly, Simon B. Hansen, Henriette Rübsam, Pia Saake, Emil B. Pedersen, Kira Gysel, Eva Madland, Shunliang Wu, Stephan Wawra, Dugald Reid, John T. Sullivan, Zuzana Blahovska, Maria Vinther, Artur Muszynski, Parastoo Azadi, Mikkel B. Thygesen, Finn L. Aachmann, Clive W. Ronson, Alga Zuccaro, Kasper R. Andersen, Simona Radutoiu, Jens Stougaard (2023) A glycan receptor kinase facilitates intracellular accommodation of arbuscular mycorrhiza and symbiotic rhizobia in the legume Lotus japonicus PLOS Biology 21 e3002127
Mitsutaka Fukudome, Toshiki Uchiumi (2024) Regulation of nitric oxide by phytoglobins in Lotus japonicus is involved in mycorrhizal symbiosis with Rhizophagus irregularis Plant Science 340 111984
Ruifan Zou, Jing Zhou, Beijiu Cheng, Guoqing Wang, Jun Fan, Xiaoyu Li (2024) Aquaporin LjNIP1;5 positively modulates drought tolerance by promoting arbuscular mycorrhizal symbiosis in Lotus japonicus Plant Science 342 112036
Stefany Castaldi, Vladimir Totev Valkov, Ezio Ricca, Maurizio Chiurazzi, Rachele Isticato (2023) Use of halotolerant Bacillus amyloliquefaciens RHF6 as a bio-based strategy for alleviating salinity stress in Lotus japonicus cv Gifu Microbiological Research 268 127274
Asa Budnick, Megan J. Franklin, Delecia Utley, Brianne Edwards, Melodi Charles, Eli D. Hornstein, Heike Sederoff (2024) Long‐ and short‐read sequencing methods discover distinct circular RNA pools in <i>Lotus japonicus</i> The Plant Genome 17
Raphael Boussageon, Mario Serrano, Damien Formey, Alexandre Tromas, Daniel Wipf, Pierre-Emmanuel Courty (2023) Knockdown of Lotus japonicus ROP3 alters the root symbiotic phenotype and alters the expression of genes involved in nutrient acquisition during both rhizobial and mycorrhizal symbioses Symbiosis 91 167-178
Sutee Kiddee, Jenjira Wongdee, Pongdet Piromyou, Pongpan Songwattana, Teerana Greetatorn, Nantakorn Boonkerd, Neung Teaumroong, Katsuharu Saito, Panlada Tittabutr (2024) Unveiling the tripartite synergistic interaction of plant-arbuscular mycorrhizal fungus symbiosis by endophytic Bacillus velezensis S141 in Lotus japonicus Symbiosis 92 355-367
Lotus: Miyakojima MG-20  Available Miyazaki University
Category: Experimental strains
Taxonomy : Lotus japonicus
Reference : Masaru Bamba, Seishiro Aoki, Tadashi Kajita, Hiroaki Setoguchi, Yasuyuki Watano, Shusei Sato, Takashi Tsuchimatsu (2020) Massive rhizobial genomic variation associated with partner quality in Lotus–Mesorhizobium symbiosis FEMS Microbiology Ecology 96
澤田有司 () マメ科植物の代謝システム解明を目指した質量分析プラットフォームの構築 大豆たん白質研究 13 139-144
Maekawa T, Kusakabe M, Shimoda Y, Sato S, Tabata S, Murooka Y, Hayashi M. (2008) Polyubiquitin promoter-based binary vectors for overexpression and gene silencing in Lotus japonicus. Mol Plant Microbe Interact 21(4) 375-82
Wang Y, Yang F, Zhu PF, Khan A, Xie ZP, Staehelin C. (2021) Use of the rhizobial type III effector gene nopP to improve Agrobacterium rhizogenes-mediated transformation of Lotus japonicus. Plant Methods 17(1) 66
Wang L, Liang J, Zhou Y, Tian T, Zhang B, Duanmu D. (2021) Molecular Characterization of Carbonic Anhydrase Genes in <i>Lotus japonicus</i> and Their Potential Roles in Symbiotic Nitrogen Fixation. Int J Mol Sci 22(15)
Feng Y, Wu P, Liu C, Peng L, Wang T, Wang C, Tan Q, Li B, Ou Y, Zhu H, Yuan S, Huang R, Stacey G, Zhang Z, Cao Y. (2021) Suppression of LjBAK1-mediated immunity by SymRK promotes rhizobial infection in Lotus japonicus. Mol Plant 14(11) 1935-1950
Hayashi-Tsugane M, Kawaguchi M. (2022) Lotus japonicus HAR1 regulates root morphology locally and systemically under a moderate nitrate condition in the absence of rhizobia. Planta 255(5) 95
Kikuchi Y, Hijikata N, Yokoyama K, Ohtomo R, Handa Y, Kawaguchi M, Saito K, Ezawa T. (2014) Polyphosphate accumulation is driven by transcriptome alterations that lead to near-synchronous and near-equivalent uptake of inorganic cations in an arbuscular mycorrhizal fungus. New Phytol 204(3) 638-649
Fukai E, Yoshikawa M, Shah N, Sandal N, Miyao A, Ono S, Hirakawa H, Akyol TY, Umehara Y, Nonomura KI, Stougaard J, Hirochika H, Hayashi M, Sato S, Andersen SU, Okazaki K. (2022) Widespread and transgenerational retrotransposon activation in inter- and intraspecies recombinant inbred populations of Lotus japonicus. Plant J 111(5) 1397-1410
Yusaku Noda, Jun Furukawa, Nobuo Suzui, Yong-Gen Yin, Keita Matsuoka, Naoki Kawachi, Shinobu Satoh (2022) Characterization of zinc uptake and translocation visualized with positron-emitting 65Zn tracer and analysis of transport-related gene expression in two <i>Lotus japonicus</i> accessions Annals of Botany
Yusaku Sugimura and Katsuharu Saito (2017) Comparative transcriptome analysis between Solanum lycopersicum L. and Lotus japonicus L. during arbuscular mycorrhizal development Soil Science and Plant Nutrition 63(2) 127-136
Masatsugu Hashiguchi; Rinda Puspasari; Yuya Suematsu; Melody Muguerza; Hidenori Tanaka; Akihiro Suzuki; Franz Hoffmann; Ryo Akashi (2017) Induction of tetraploid Lotus japonicus and interspecific hybridization with super-root derived Lotus corniculatus regenerants Crop Sci 57 2387–2394
Tominaga T, Miura C, Sumigawa Y, Hirose Y, Yamaguchi K, Shigenobu S, Mine A, Kaminaka H. (2021) Conservation and Diversity in Gibberellin-Mediated Transcriptional Responses Among Host Plants Forming Distinct Arbuscular Mycorrhizal Morphotypes. Front Plant Sci 12 795695
Sugiyama A, Shitan N, Sato S, Nakamura Y, Tabata S, Yazaki K. (2006) Genome-wide analysis of ATP-binding cassette (ABC) proteins in a model legume plant, Lotus japonicus: comparison with Arabidopsis ABC protein family. DNA Res 13(5) 205-28
Ono N, Ishida K, Yamashino T, Nakanishi H, Sato S, Tabata S, Mizuno T. (2010) Genomewide characterization of the light-responsive and clock-controlled output pathways in Lotus japonicus with special emphasis of its uniqueness. Plant Cell Physiol 51(10) 1800-14
Takos A, Lai D, Mikkelsen L, Abou Hachem M, Shelton D, Motawia MS, Olsen CE, Wang TL, Martin C, Rook F. (2010) Genetic screening identifies cyanogenesis-deficient mutants of Lotus japonicus and reveals enzymatic specificity in hydroxynitrile glucoside metabolism. Plant Cell 22(5) 1605-19
Sugiyama A, Linley PJ, Sasaki K, Kumano T, Yamamoto H, Shitan N, Ohara K, Takanashi K, Harada E, Hasegawa H, Terakawa T, Kuzuyama T, Yazaki K. (2011) Metabolic engineering for the production of prenylated polyphenols in transgenic legume plants using bacterial and plant prenyltransferases. Metab Eng 13(6) 629-37
Gossmann JA, Markmann K, Brachmann A, Rose LE, Parniske M. (2012) Polymorphic infection and organogenesis patterns induced by a Rhizobium leguminosarum isolate from Lotus root nodules are determined by the host genotype. New Phytol 196(2) 561-573
Ikeda Y, Shimura H, Kitahara R, Masuta C, Ezawa T. (2012) A novel virus-like double-stranded RNA in an obligate biotroph arbuscular mycorrhizal fungus: a hidden player in mycorrhizal symbiosis. Mol Plant Microbe Interact 25(7) 1005-12
Takanashi K, Sasaki T, Kan T, Saida Y, Sugiyama A, Yamamoto Y, Yazaki K. (2016) A Dicarboxylate Transporter, LjALMT4, Mainly Expressed in Nodules of Lotus japonicus. Mol Plant Microbe Interact 29(7) 584-92
Tominaga T, Miura C, Takeda N, Kanno Y, Takemura Y, Seo M, Yamato M, Kaminaka H. (2020) Gibberellin Promotes Fungal Entry and Colonization during Paris-Type Arbuscular Mycorrhizal Symbiosis in Eustoma grandiflorum. Plant Cell Physiol 61(3) 565-575
Li H, Jiang F, Wu P, Wang K, Cao Y. (2020) A High-Quality Genome Sequence of Model Legume <i>Lotus japonicus</i> (MG-20) Provides Insights into the Evolution of Root Nodule Symbiosis. Genes (Basel) 11(5)
Akamatsu A, Nagae M, Nishimura Y, Romero Montero D, Ninomiya S, Kojima M, Takebayashi Y, Sakakibara H, Kawaguchi M, Takeda N. (2021) Endogenous gibberellins affect root nodule symbiosis via transcriptional regulation of NODULE INCEPTION in Lotus japonicus. Plant J 105(6) 1507-1520
Villar I, Rubio MC, Calvo-Begueria L, Pérez-Rontomé C, Larrainzar E, Wilson MT, Sandal N, Mur LA, Wang L, Reeder B, Duanmu D, Uchiumi T, Stougaard J, Becana M. (2021) Three classes of hemoglobins are required for optimal vegetative and reproductive growth of Lotus japonicus: genetic and biochemical characterization of LjGlb2-1. J Exp Bot 72(22) 7778-7791
Du Y, Luo S, Zhao J, Feng Z, Chen X, Ren W, Liu X, Wang Z, Yu L, Li W, Qu Y, Liu J, Zhou L. (2021) Genome and transcriptome-based characterization of high energy carbon-ion beam irradiation induced delayed flower senescence mutant in Lotus japonicus. BMC Plant Biol 21(1) 510
Misawa F, Ito M, Nosaki S, Nishida H, Watanabe M, Suzuki T, Miura K, Kawaguchi M, Suzaki T. (2022) Nitrate transport via NRT2.1 mediates NIN-LIKE PROTEIN-dependent suppression of root nodulation in Lotus japonicus. Plant Cell 34(5) 1844-1862
Goto T, Soyano T, Liu M, Mori T, Kawaguchi M. (2022) Auxin methylation by <i>IAMT1</i>, duplicated in the legume lineage, promotes root nodule development in <i>Lotus japonicus</i>. Proc Natl Acad Sci U S A 119(10) e2116549119
Akamatsu A, Nagae M, Takeda N. (2022) The <i>CYCLOPS Response Element</i> in the <i>NIN</i> Promoter Is Important but Not Essential for Infection Thread Formation During <i>Lotus japonicus-</i>Rhizobia Symbiosis. Mol Plant Microbe Interact 35(8) 650-658
Yunjian Xu, Zhe Chen, Xiaoyu Li, Jing Tan, Fang Liu, Jianping Wu (2023) Mycorrhizal fungi alter root exudation to cultivate a beneficial microbiome for plant growth Functional Ecology 37 664-675
Jiao Liu, Leru Liu, Lu Tian, Shaoming Xu, Guojiang Wu, Huawu Jiang, Yaping Chen (2023) Overexpression of LjPLT3 Enhances Salt Tolerance in Lotus japonicus International Journal of Molecular Sciences 24 5149
Longlong Wang, Tao Tian, Jianjun Liang, Runhui Li, Xian Xin, Yongmei Qi, Yumiao Zhou, Qiuling Fan, Guogui Ning, Manuel Becana, Deqiang Duanmu (2023) A transcription factor of the <scp>NAC</scp> family regulates nitrate‐induced legume nodule senescence New Phytologist 238 2113-2129
Takanashi K, Sugiyama A, Sato S, Tabata S, Yazaki K. (2012) LjABCB1, an ATP-binding cassette protein specifically induced in uninfected cells of Lotus japonicus nodules. J Plant Physiol 169(3) 322-6
Uchiumi T, Ohwada T, Itakura M, Mitsui H, Nukui N, Dawadi P, Kaneko T, Tabata S, Yokoyama T, Tejima K, Saeki K, Omori H, Hayashi M, Maekawa T, Sriprang R, Murooka Y, Tajima S, Simomura K, Nomura M, Suzuki A, Shimoda Y, Sioya K, Abe M, Minamisawa K. (2004) Expression islands clustered on the symbiosis island of the Mesorhizobium loti genome. J Bacteriol 186(8) 2439-48
Poch HL, López RH, Clark SJ. (2007) Ecotypes of the model legume Lotus japonicus vary in their interaction phenotypes with the root-knot nematode Meloidogyne incognita. Ann Bot 99(6) 1223-9
Hiraoka Y, Ueda H, Sugimoto Y. (2009) Molecular responses of Lotus japonicus to parasitism by the compatible species Orobanche aegyptiaca and the incompatible species Striga hermonthica. J Exp Bot 60(2) 641-50
Fukai E, Dobrowolska AD, Madsen LH, Madsen EB, Umehara Y, Kouchi H, Hirochika H, Stougaard J. (2008) Transposition of a 600 thousand-year-old LTR retrotransposon in the model legume Lotus japonicus. Plant Mol Biol 68(6) 653-63
Maekawa-Yoshikawa M, Müller J, Takeda N, Maekawa T, Sato S, Tabata S, Perry J, Wang TL, Groth M, Brachmann A, Parniske M. (2009) The temperature-sensitive brush mutant of the legume Lotus japonicus reveals a link between root development and nodule infection by rhizobia. Plant Physiol 149(4) 1785-96
Tominaga A, Nagata M, Futsuki K, Abe H, Uchiumi T, Abe M, Kucho K, Hashiguchi M, Akashi R, Hirsch AM, Arima S, Suzuki A. (2009) Enhanced nodulation and nitrogen fixation in the abscisic acid low-sensitive mutant enhanced nitrogen fixation1 of Lotus japonicus. Plant Physiol 151(4) 1965-76
Ichida H, Yoneyama K, Koba T, Abe T. (2009) Epigenetic modification of rhizobial genome is essential for efficient nodulation. Biochem Biophys Res Commun 389(2) 301-4
Ueoka-Nakanishi H, Hori N, Ishida K, Ono N, Yamashino T, Nakamichi N, Mizuno T. (2011) Characterization of shade avoidance responses in Lotus japonicus. Biosci Biotechnol Biochem 75(11) 2148-54
Shigeyama T, Tominaga A, Arima S, Sakai T, Inada S, Jikumaru Y, Kamiya Y, Uchiumi T, Abe M, Hashiguchi M, Akashi R, Hirsch AM, Suzuki A. (2012) Additional cause for reduced JA-Ile in the root of a Lotus japonicus phyB mutant. Plant Signal Behav 7(7) 746-8
Kimura M, Cutler S, Isobe S. (2015) A Novel Phenolic Compound, Chloroxynil, Improves Agrobacterium-Mediated Transient Transformation in Lotus japonicus. PLoS One 10(7) e0131626
Nambu M, Tatsukami Y, Morisaka H, Kuroda K, Ueda M. (2015) Quantitative time-course proteome analysis of Mesorhizobium loti during nodule maturation. J Proteomics 125 112-20
Osuki KI, Hashimoto S, Suzuki A, Araragi M, Takahara A, Kurosawa M, Kucho KI, Higashi S, Abe M, Uchiumi T. (2016) Gene expression and localization of a β-1,3-glucanase of Lotus japonicus. J Plant Res 129(4) 749-758
Sugiyama A, Saida Y, Yoshimizu M, Takanashi K, Sosso D, Frommer WB, Yazaki K. (2017) Molecular Characterization of LjSWEET3, a Sugar Transporter in Nodules of Lotus japonicus. Plant Cell Physiol 58(2) 298-306
Quazi Forhad Quadira, Toshihiro Watanabeb, Zheng Chena, Mitsuru Osakib, Takuro Shinanoc (2011) Ionomic response of Lotus japonicus to different root-zone temperatures Soil Science and Plant Nutrition 57(2) 221-232
Masatsugu Hashiguchi, Shin-ichi Tsuruta, Ryo Akashi (2011) Morphological Traits of Lotus japonicus (Regal) Ecotypes Collected in Japan IBC 3(4) 1-7
Sandal N, Petersen TR, Murray J, Umehara Y, Karas B, Yano K, Kumagai H, Yoshikawa M, Saito K, Hayashi M, Murakami Y, Wang X, Hakoyama T, Imaizumi-Anraku H, Sato S, Kato T, Chen W, Hossain MS, Shibata S, Wang TL, Yokota K, Larsen K, Kanamori N, Madsen E, Radutoiu S, Madsen LH, Radu TG, Krusell L, Ooki Y, Banba M, Betti M, Rispail N, Skøt L, Tuck E, Perry J, Yoshida S, Vickers K, Pike J, Mulder L, Charpentier M, Müller J, Ohtomo R, Kojima T, Ando S, Marquez AJ, Gresshoff PM, Harada K, Webb J, Hata S, Suganuma N, Kouchi H, Kawasaki S, Tabata S, Hayashi M, Parniske M, Szczyglowski K, Kawaguchi M, Stougaard J. (2006) Genetics of symbiosis in Lotus japonicus: recombinant inbred lines, comparative genetic maps, and map position of 35 symbiotic loci. Mol Plant Microbe Interact 19(1) 80-91
Kawaguchi M, Imaizumi-Anraku H, Koiwa H, Niwa S, Ikuta A, Syono K, Akao S. (2002) Root, root hair, and symbiotic mutants of the model legume Lotus japonicus. Mol Plant Microbe Interact 15(1) 17-26
Nishimura R, Hayashi M, Wu GJ, Kouchi H, Imaizumi-Anraku H, Murakami Y, Kawasaki S, Akao S, Ohmori M, Nagasawa M, Harada K, Kawaguchi M. (2002) HAR1 mediates systemic regulation of symbiotic organ development. Nature 420(6914) 426-9
Asamizu E, Nakamura Y, Sato S, Tabata S. (2004) Characteristics of the Lotus japonicus gene repertoire deduced from large-scale expressed sequence tag (EST) analysis. Plant Mol Biol 54(3) 405-14
Imaizumi-Anraku H, Takeda N, Charpentier M, Perry J, Miwa H, Umehara Y, Kouchi H, Murakami Y, Mulder L, Vickers K, Pike J, Downie JA, Wang T, Sato S, Asamizu E, Tabata S, Yoshikawa M, Murooka Y, Wu GJ, Kawaguchi M, Kawasaki S, Parniske M, Hayashi M. (2005) Plastid proteins crucial for symbiotic fungal and bacterial entry into plant roots. Nature 433(7025) 527-31
Holligan D, Zhang X, Jiang N, Pritham EJ, Wessler SR. (2006) The transposable element landscape of the model legume Lotus japonicus. Genetics 174(4) 2215-28
Ichida H, Matsuyama T, Abe T, Koba T. (2007) DNA adenine methylation changes dramatically during establishment of symbiosis. FEBS J 274(4) 951-62
Udvardi MK, Tabata S, Parniske M, Stougaard J. (2005) Lotus japonicus: legume research in the fast lane. Trends Plant Sci 10(5) 222-8
Feng X, Zhao Z, Tian Z, Xu S, Luo Y, Cai Z, Wang Y, Yang J, Wang Z, Weng L, Chen J, Zheng L, Guo X, Luo J, Sato S, Tabata S, Ma W, Cao X, Hu X, Sun C, Luo D. (2006) Control of petal shape and floral zygomorphy in Lotus japonicus. Proc Natl Acad Sci U S A 103(13) 4970-5
Nukui N, Minamisawa K, Ayabe S, Aoki T. (2006) Expression of the 1-aminocyclopropane-1-carboxylic acid deaminase gene requires symbiotic nitrogen-fixing regulator gene nifA2 in Mesorhizobium loti MAFF303099. Appl Environ Microbiol 72(7) 4964-9
Sasakura F, Uchiumi T, Shimoda Y, Suzuki A, Takenouchi K, Higashi S, Abe M. (2006) A class 1 hemoglobin gene from Alnus firma functions in symbiotic and nonsymbiotic tissues to detoxify nitric oxide. Mol Plant Microbe Interact 19(4) 441-50
Nakatsukasa-Akune M, Yamashita K, Shimoda Y, Uchiumi T, Abe M, Aoki T, Kamizawa A, Ayabe S, Higashi S, Suzuki A. (2005) Suppression of root nodule formation by artificial expression of the TrEnodDR1 (coat protein of White clover cryptic virus 1) gene in Lotus japonicus. Mol Plant Microbe Interact 18(10) 1069-80
Akihiro Suzuki, Hisatoshi Hara, Tomoyo Kinoue, Mikiko Abe, Toshiki Uchiumi, Ken-ichi Kucho, Shiro Higashi, Ann M. Hirsch and Susumu Arima (2008) Split-root study of autoregulation of nodulation in the model legume Lotus japonicus J Plant Res. 121 (2)
S. Okazaki, S. Okabe, M. Higashi, Y. Shimoda, S. Sato, S. Tabata, M. Hashiguchi, R. Akashi and K. Saeki. (2009) Identification and functional analysis of type III effector proteins in Mesorhizobium loti. Molecular Plant-Microbe Interaction
Shimada N, Sato S, Akashi T, Nakamura Y, Tabata S, Ayabe S, Aoki T. (2007) Genome-wide analyses of the structural gene families involved in the legume-specific 5-deoxyisoflavonoid biosynthesis of Lotus japonicus. DNA Res 14(1) 25-36
Sato S, Nakamura Y, Kaneko T, Asamizu E, Kato T, Nakao M, Sasamoto S, Watanabe A, Ono A, Kawashima K, Fujishiro T, Katoh M, Kohara M, Kishida Y, Minami C, Nakayama S, Nakazaki N, Shimizu Y, Shinpo S, Takahashi C, Wada T, Yamada M, Ohmido N, Hayashi M, Fukui K, Baba T, Nakamichi T, Mori H, Tabata S. (2008) Genome structure of the legume, Lotus japonicus. DNA Res 15(4) 227-39
Wang X, Sato S, Tabata S, Kawasaki S. (2008) A high-density linkage map of Lotus japonicus based on AFLP and SSR markers. DNA Res 15(5) 323-32
Ueda H, Sugimoto Y. (2010) Vestitol as a chemical barrier against intrusion of parasitic plant Striga hermonthica into Lotus japonicus roots. Biosci Biotechnol Biochem 74(8) 1662-7
Hijikata N, Murase M, Tani C, Ohtomo R, Osaki M, Ezawa T. (2010) Polyphosphate has a central role in the rapid and massive accumulation of phosphorus in extraradical mycelium of an arbuscular mycorrhizal fungus. New Phytol 186(2) 285-9
Murakami E, Nagata M, Shimoda Y, Kucho K, Higashi S, Abe M, Hashimoto M, Uchiumi T. (2011) Nitric oxide production induced in roots of Lotus japonicus by lipopolysaccharide from Mesorhizobium loti. Plant Cell Physiol 52(4) 610-7
Kai S, Tanaka H, Hashiguchi M, Iwata H, Akashi R (2010) Analysis of genetic diversity and morphological traits of Japanese Lotus japonicus for establishment of a core collection Breed Sci. 60(4) 436-446
Yamashino T, Yamawaki S, Hagui E, Ishida K, Ueoka-Nakanishi H, Nakamichi N, Mizuno T. (2013) Clock-controlled and FLOWERING LOCUS T (FT)-dependent photoperiodic pathway in Lotus japonicus II: characterization of a microRNA implicated in the control of flowering time. Biosci Biotechnol Biochem 77(6) 1179-85
Van de Velde W, Zehirov G, Szatmari A, Debreczeny M, Ishihara H, Kevei Z, Farkas A, Mikulass K, Nagy A, Tiricz H, Satiat-Jeunemaître B, Alunni B, Bourge M, Kucho K, Abe M, Kereszt A, Maroti G, Uchiumi T, Kondorosi E, Mergaert P. (2010) Plant peptides govern terminal differentiation of bacteria in symbiosis. Science 327(5969) 1122-6
Tatsukami Y, Nambu M, Morisaka H, Kuroda K, Ueda M. (2013) Disclosure of the differences of Mesorhizobium loti under the free-living and symbiotic conditions by comparative proteome analysis without bacteroid isolation. BMC Microbiol 13 180
Takanashi K, Yokosho K, Saeki K, Sugiyama A, Sato S, Tabata S, Ma JF, Yazaki K. (2013) LjMATE1: a citrate transporter responsible for iron supply to the nodule infection zone of Lotus japonicus. Plant Cell Physiol 54(4) 585-94
Amin AN, Hayashi S, Bartlem DG. (2014) Robust in vitro assay system for quantitative analysis of parasitic root-knot nematode infestation using Lotus japonicus. J Biosci Bioeng 118(2) 205-13
Katsuyuki Yanagi , Koichi Sugimoto & Kenji Matsui (2011) Oxylipin-specific cytochrome P450s (CYP74s) in Lotus japonicus: their implications in response to mechanical wounding and nodule formation J Plant Interactions Volume 6, Issue 4 255-264
Ying Cheng, Keiko Ishimoto, Yuko Kuriyama, Mitsuru Osaki, Tatsuhiro Ezawa (2012) Ninety-year-, but not single, application of phosphorus fertilizer has a major impact on arbuscular mycorrhizal fungal communities Plant Soil Volume 365, Issue 1-2 397-407
Makiko Mimura (2013) Genetic and phenotypic variation in Lotus japonicus (Regel) K. Larsen, a model legume species Canadian Journal of Plant Science Vol. 93, No. 3 435-444
Xiaoyu Li, Ying Cheng, Wei Ma, Yang Zhao, Haiyang Jiang, Ming Zhang (2010) Identification and characterization of NBS-encoding disease resistance genes in Lotus japonicus Plant Syst Evol Volume 289, Issue 1-2 101-110
Kojima T, Saito K, Oba H, Yoshida Y, Terasawa J, Umehara Y, Suganuma N, Kawaguchi M, Ohtomo R. (2014) Isolation and phenotypic characterization of Lotus japonicus mutants specifically defective in arbuscular mycorrhizal formation. Plant Cell Physiol 55(5) 928-41
Hideki Hirakawa, Terry Mun, Shusei Sato, Stig U. Andersen (2014) Legume and Lotus japonicus Databases The Lotus japonicus Genome IV 259-267
Hidenori Tanaka, Awatsaya Chotekajorn, Sayumi Kai, Genki Ishigaki, Masatsugu Hashiguchi, Ryo Akashi (2016) Determination of Genome Size, Chromosome Number, and Genetic Variation Using Inter-Simple Sequence Repeat Markers in Lotus spp. Cytologia 81(1) 95-102
Lai D, Pičmanová M, Abou Hachem M, Motawia MS, Olsen CE, Møller BL, Rook F, Takos AM. (2015) Lotus japonicus flowers are defended by a cyanogenic β-glucosidase with highly restricted expression to essential reproductive organs. Plant Mol Biol 89(1-2) 21-34
Sugiyama A, Fukuda S, Takanashi K, Yoshioka M, Yoshioka H, Narusaka Y, Narusaka M, Kojima M, Sakakibara H, Shitan N, Sato S, Tabata S, Kawaguchi M, Yazaki K. (2015) Molecular Characterization of LjABCG1, an ATP-Binding Cassette Protein in Lotus japonicus. PLoS One 10(9) e0139127
Nagata M, Yamamoto N, Shigeyama T, Terasawa Y, Anai T, Sakai T, Inada S, Arima S, Hashiguchi M, Akashi R, Nakayama H, Ueno D, Hirsch AM, Suzuki A. (2015) Red/Far Red Light Controls Arbuscular Mycorrhizal Colonization via Jasmonic Acid and Strigolactone Signaling. Plant Cell Physiol 56(11) 2100-9
Ito M, Tajima Y, Ogawa-Ohnishi M, Nishida H, Nosaki S, Noda M, Sotta N, Kawade K, Kamiya T, Fujiwara T, Matsubayashi Y, Suzaki T. (2024) IMA peptides regulate root nodulation and nitrogen homeostasis by providing iron according to internal nitrogen status. Nat Commun 15(1) 733
Leru Liu, Shaoming Xu, Lu Tian, Xuelian Qin, Guojiang Wu, Huawu Jiang, Yaping Chen (2024) Functional characterization of polyol/monosaccharide transporter 1 in Lotus japonicus Journal of Plant Physiology 292 154146
Ruifan Zou, Jing Zhou, Beijiu Cheng, Guoqing Wang, Jun Fan, Xiaoyu Li (2024) Aquaporin LjNIP1;5 positively modulates drought tolerance by promoting arbuscular mycorrhizal symbiosis in Lotus japonicus Plant Science 342 112036
Lotus: L. burttii B-303  Available Miyazaki University
Category: Experimental strains
Taxonomy : Lotus japonicus
Reference : Fukai E, Yoshikawa M, Shah N, Sandal N, Miyao A, Ono S, Hirakawa H, Akyol TY, Umehara Y, Nonomura KI, Stougaard J, Hirochika H, Hayashi M, Sato S, Andersen SU, Okazaki K. (2022) Widespread and transgenerational retrotransposon activation in inter- and intraspecies recombinant inbred populations of Lotus japonicus. Plant J 111(5) 1397-1410
Gossmann JA, Markmann K, Brachmann A, Rose LE, Parniske M. (2012) Polymorphic infection and organogenesis patterns induced by a Rhizobium leguminosarum isolate from Lotus root nodules are determined by the host genotype. New Phytol 196(2) 561-573
Sebastián Acosta-Jurado, Dulce-Nombre Rodríguez-Navarro, Yasuyuki Kawaharada, Miguel A. Rodríguez-Carvajal, Antonio Gil-Serrano, María E. Soria-Díaz, Francisco Pérez-Montaño, Juan Fernández-Perea, Yanbo Niu, Cynthia Alias-Villegas, Irene Jiménez-Guerrero, Pilar Navarro-Gómez, Francisco Javier López-Baena, Simon Kelly, Niels Sandal, Jens Stougaard, José E. Ruiz-Sainz, and José-María Vinardell () Sinorhizobium fredii HH103 nolR and nodD2 mutants gain capacity for infection thread invasion of Lotus japonicus Gifu and Lotus burttii Environmental Microbiology 21(5) 1718–1739
Kusakabe S, Higasitani N, Kaneko T, Yasuda M, Miwa H, Okazaki S, Saeki K, Higashitani A, Sato S. (2020) Lotus Accessions Possess Multiple Checkpoints Triggered by Different Type III Secretion System Effectors of the Wide-Host-Range Symbiont Bradyrhizobium elkanii USDA61. Microbes Environ 35(1)
Lotus: RI-121 Miyazaki University
Category: RILs
: LjMG recombinant imbred lines (RILs) were made by crossing Gifu B-129 and Miyakojima MG20. These lines were self pollinated to the F8 generation starting from the F2 seeds. The typing data for a total of 48 SSLP markers distributed along the six chromosomes are available from the Kazusa DNA Research Institute.
Taxonomy : Lotus japonicus
Reference : Fukai E, Yoshikawa M, Shah N, Sandal N, Miyao A, Ono S, Hirakawa H, Akyol TY, Umehara Y, Nonomura KI, Stougaard J, Hirochika H, Hayashi M, Sato S, Andersen SU, Okazaki K. (2022) Widespread and transgenerational retrotransposon activation in inter- and intraspecies recombinant inbred populations of Lotus japonicus. Plant J 111(5) 1397-1410
Lotus: RI-134 Miyazaki University
Category: RILs
: LjMG recombinant imbred lines (RILs) were made by crossing Gifu B-129 and Miyakojima MG20. These lines were self pollinated to the F8 generation starting from the F2 seeds. The typing data for a total of 48 SSLP markers distributed along the six chromosomes are available from the Kazusa DNA Research Institute.
Taxonomy : Lotus japonicus
Reference : Fukai E, Yoshikawa M, Shah N, Sandal N, Miyao A, Ono S, Hirakawa H, Akyol TY, Umehara Y, Nonomura KI, Stougaard J, Hirochika H, Hayashi M, Sato S, Andersen SU, Okazaki K. (2022) Widespread and transgenerational retrotransposon activation in inter- and intraspecies recombinant inbred populations of Lotus japonicus. Plant J 111(5) 1397-1410
Lotus: RI-173  Available Miyazaki University
Category: RILs
: LjMG recombinant imbred lines (RILs) were made by crossing Gifu B-129 and Miyakojima MG20. These lines were self pollinated to the F8 generation starting from the F2 seeds. The typing data for a total of 48 SSLP markers distributed along the six chromosomes are available from the Kazusa DNA Research Institute.
Taxonomy : Lotus japonicus
Reference : Fukai E, Yoshikawa M, Shah N, Sandal N, Miyao A, Ono S, Hirakawa H, Akyol TY, Umehara Y, Nonomura KI, Stougaard J, Hirochika H, Hayashi M, Sato S, Andersen SU, Okazaki K. (2022) Widespread and transgenerational retrotransposon activation in inter- and intraspecies recombinant inbred populations of Lotus japonicus. Plant J 111(5) 1397-1410
Lotus: RI-100  Available Miyazaki University
Category: RILs
: LjMG recombinant imbred lines (RILs) were made by crossing Gifu B-129 and Miyakojima MG20. These lines were self pollinated to the F8 generation starting from the F2 seeds. The typing data for a total of 48 SSLP markers distributed along the six chromosomes are available from the Kazusa DNA Research Institute.
Taxonomy : Lotus japonicus
Reference : Fukai E, Yoshikawa M, Shah N, Sandal N, Miyao A, Ono S, Hirakawa H, Akyol TY, Umehara Y, Nonomura KI, Stougaard J, Hirochika H, Hayashi M, Sato S, Andersen SU, Okazaki K. (2022) Widespread and transgenerational retrotransposon activation in inter- and intraspecies recombinant inbred populations of Lotus japonicus. Plant J 111(5) 1397-1410
Lotus: RI-103  Available Miyazaki University
Category: RILs
: LjMG recombinant imbred lines (RILs) were made by crossing Gifu B-129 and Miyakojima MG20. These lines were self pollinated to the F8 generation starting from the F2 seeds. The typing data for a total of 48 SSLP markers distributed along the six chromosomes are available from the Kazusa DNA Research Institute.
Taxonomy : Lotus japonicus
Reference : Fukai E, Yoshikawa M, Shah N, Sandal N, Miyao A, Ono S, Hirakawa H, Akyol TY, Umehara Y, Nonomura KI, Stougaard J, Hirochika H, Hayashi M, Sato S, Andersen SU, Okazaki K. (2022) Widespread and transgenerational retrotransposon activation in inter- and intraspecies recombinant inbred populations of Lotus japonicus. Plant J 111(5) 1397-1410
Lotus: RI-004  Available Miyazaki University
Category: RILs
: LjMG recombinant imbred lines (RILs) were made by crossing Gifu B-129 and Miyakojima MG20. These lines were self pollinated to the F8 generation starting from the F2 seeds. The typing data for a total of 48 SSLP markers distributed along the six chromosomes are available from the Kazusa DNA Research Institute.
Taxonomy : Lotus japonicus
Reference : Fukai E, Yoshikawa M, Shah N, Sandal N, Miyao A, Ono S, Hirakawa H, Akyol TY, Umehara Y, Nonomura KI, Stougaard J, Hirochika H, Hayashi M, Sato S, Andersen SU, Okazaki K. (2022) Widespread and transgenerational retrotransposon activation in inter- and intraspecies recombinant inbred populations of Lotus japonicus. Plant J 111(5) 1397-1410
Lotus: RI-006  Available Miyazaki University
Category: RILs
: LjMG recombinant imbred lines (RILs) were made by crossing Gifu B-129 and Miyakojima MG20. These lines were self pollinated to the F8 generation starting from the F2 seeds. The typing data for a total of 48 SSLP markers distributed along the six chromosomes are available from the Kazusa DNA Research Institute.
Taxonomy : Lotus japonicus
Reference : Fukai E, Yoshikawa M, Shah N, Sandal N, Miyao A, Ono S, Hirakawa H, Akyol TY, Umehara Y, Nonomura KI, Stougaard J, Hirochika H, Hayashi M, Sato S, Andersen SU, Okazaki K. (2022) Widespread and transgenerational retrotransposon activation in inter- and intraspecies recombinant inbred populations of Lotus japonicus. Plant J 111(5) 1397-1410
Lotus: RI-007  Available Miyazaki University
Category: RILs
: LjMG recombinant imbred lines (RILs) were made by crossing Gifu B-129 and Miyakojima MG20. These lines were self pollinated to the F8 generation starting from the F2 seeds. The typing data for a total of 48 SSLP markers distributed along the six chromosomes are available from the Kazusa DNA Research Institute.
Taxonomy : Lotus japonicus
Reference : Fukai E, Yoshikawa M, Shah N, Sandal N, Miyao A, Ono S, Hirakawa H, Akyol TY, Umehara Y, Nonomura KI, Stougaard J, Hirochika H, Hayashi M, Sato S, Andersen SU, Okazaki K. (2022) Widespread and transgenerational retrotransposon activation in inter- and intraspecies recombinant inbred populations of Lotus japonicus. Plant J 111(5) 1397-1410
Lotus: RI-008  Available Miyazaki University
Category: RILs
: LjMG recombinant imbred lines (RILs) were made by crossing Gifu B-129 and Miyakojima MG20. These lines were self pollinated to the F8 generation starting from the F2 seeds. The typing data for a total of 48 SSLP markers distributed along the six chromosomes are available from the Kazusa DNA Research Institute.
Taxonomy : Lotus japonicus
Reference : Fukai E, Yoshikawa M, Shah N, Sandal N, Miyao A, Ono S, Hirakawa H, Akyol TY, Umehara Y, Nonomura KI, Stougaard J, Hirochika H, Hayashi M, Sato S, Andersen SU, Okazaki K. (2022) Widespread and transgenerational retrotransposon activation in inter- and intraspecies recombinant inbred populations of Lotus japonicus. Plant J 111(5) 1397-1410
Lotus: RI-011  Available Miyazaki University
Category: RILs
: LjMG recombinant imbred lines (RILs) were made by crossing Gifu B-129 and Miyakojima MG20. These lines were self pollinated to the F8 generation starting from the F2 seeds. The typing data for a total of 48 SSLP markers distributed along the six chromosomes are available from the Kazusa DNA Research Institute.
Taxonomy : Lotus japonicus
Reference : Fukai E, Yoshikawa M, Shah N, Sandal N, Miyao A, Ono S, Hirakawa H, Akyol TY, Umehara Y, Nonomura KI, Stougaard J, Hirochika H, Hayashi M, Sato S, Andersen SU, Okazaki K. (2022) Widespread and transgenerational retrotransposon activation in inter- and intraspecies recombinant inbred populations of Lotus japonicus. Plant J 111(5) 1397-1410
Lotus: RI-014  Available Miyazaki University
Category: RILs
: LjMG recombinant imbred lines (RILs) were made by crossing Gifu B-129 and Miyakojima MG20. These lines were self pollinated to the F8 generation starting from the F2 seeds. The typing data for a total of 48 SSLP markers distributed along the six chromosomes are available from the Kazusa DNA Research Institute.
Taxonomy : Lotus japonicus
Reference : Fukai E, Yoshikawa M, Shah N, Sandal N, Miyao A, Ono S, Hirakawa H, Akyol TY, Umehara Y, Nonomura KI, Stougaard J, Hirochika H, Hayashi M, Sato S, Andersen SU, Okazaki K. (2022) Widespread and transgenerational retrotransposon activation in inter- and intraspecies recombinant inbred populations of Lotus japonicus. Plant J 111(5) 1397-1410
Lotus: RI-015  Available Miyazaki University
Category: RILs
: LjMG recombinant imbred lines (RILs) were made by crossing Gifu B-129 and Miyakojima MG20. These lines were self pollinated to the F8 generation starting from the F2 seeds. The typing data for a total of 48 SSLP markers distributed along the six chromosomes are available from the Kazusa DNA Research Institute.
Taxonomy : Lotus japonicus
Reference : Fukai E, Yoshikawa M, Shah N, Sandal N, Miyao A, Ono S, Hirakawa H, Akyol TY, Umehara Y, Nonomura KI, Stougaard J, Hirochika H, Hayashi M, Sato S, Andersen SU, Okazaki K. (2022) Widespread and transgenerational retrotransposon activation in inter- and intraspecies recombinant inbred populations of Lotus japonicus. Plant J 111(5) 1397-1410
Lotus: RI-018  Available Miyazaki University
Category: RILs
: LjMG recombinant imbred lines (RILs) were made by crossing Gifu B-129 and Miyakojima MG20. These lines were self pollinated to the F8 generation starting from the F2 seeds. The typing data for a total of 48 SSLP markers distributed along the six chromosomes are available from the Kazusa DNA Research Institute.
Taxonomy : Lotus japonicus
Reference : Fukai E, Yoshikawa M, Shah N, Sandal N, Miyao A, Ono S, Hirakawa H, Akyol TY, Umehara Y, Nonomura KI, Stougaard J, Hirochika H, Hayashi M, Sato S, Andersen SU, Okazaki K. (2022) Widespread and transgenerational retrotransposon activation in inter- and intraspecies recombinant inbred populations of Lotus japonicus. Plant J 111(5) 1397-1410
DNA List 15 items 1 - 15 / 15
Lotus: LjB04p03  Available Miyazaki University
Category: BAC clones
Lotus: LjB13e21  Available Miyazaki University
Category: BAC clones
Lotus: MPD075a04  Available Miyazaki University
Category: cDNA clones
library code : MPD
organ : Pod (20-30 mm)
library type : Normalized
vector : pBluescript II SK-
Accession Number : 3' end sequence:AV774891
Taxonomy : Lotus japonicus
Reference : Akashi T, Koshimizu S, Aoki T, Ayabe S. (2006) Identification of cDNAs encoding pterocarpan reductase involved in isoflavan phytoalexin biosynthesis in Lotus japonicus by EST mining. FEBS Lett 580(24) 5666-70
Lotus: MWM249g01  Available Miyazaki University
Category: cDNA clones
library code : MWM
organ : Whole plant
library type : Normalized
vector : pBluescript II SK-
Accession Number : 5' end sequence:AV414824
Taxonomy : Lotus japonicus
Reference : Akashi T, Koshimizu S, Aoki T, Ayabe S. (2006) Identification of cDNAs encoding pterocarpan reductase involved in isoflavan phytoalexin biosynthesis in Lotus japonicus by EST mining. FEBS Lett 580(24) 5666-70
Lotus: MWM092h09  Available Miyazaki University
Category: cDNA clones
library code : MWM
organ : Whole plant
library type : Normalized
vector : pBluescript II SK-
Accession Number : 5' end sequence:AV428151
Taxonomy : Lotus japonicus
Reference : Akashi T, Koshimizu S, Aoki T, Ayabe S. (2006) Identification of cDNAs encoding pterocarpan reductase involved in isoflavan phytoalexin biosynthesis in Lotus japonicus by EST mining. FEBS Lett 580(24) 5666-70
Lotus: MPD004c03  Available Miyazaki University
Category: cDNA clones
Lotus: SPDL089e08  Available Miyazaki University
Category: cDNA clones
library code : SPDL
organ : Pod (<20 mm)
library type : Size-selected
vector : pBluescript II SK-
Accession Number : 3' end sequence:BP057594
Taxonomy : Lotus japonicus
Reference : Akashi T, Koshimizu S, Aoki T, Ayabe S. (2006) Identification of cDNAs encoding pterocarpan reductase involved in isoflavan phytoalexin biosynthesis in Lotus japonicus by EST mining. FEBS Lett 580(24) 5666-70
Lotus: MWM058d07  Available Miyazaki University
Category: cDNA clones
library code : MWM
organ : Whole plant
library type : Normalized
vector : pBluescript II SK-
Accession Number : 5' end sequence:AV425730,3' end sequence:AV765614
Taxonomy : Lotus japonicus
Reference : Akashi T, Koshimizu S, Aoki T, Ayabe S. (2006) Identification of cDNAs encoding pterocarpan reductase involved in isoflavan phytoalexin biosynthesis in Lotus japonicus by EST mining. FEBS Lett 580(24) 5666-70
Lotus: MR020b12  Available Miyazaki University
Category: cDNA clones
Lotus: MFB088d08  Available Miyazaki University
Category: cDNA clones
Lotus: MWM134b04  Available Miyazaki University
Category: cDNA clones
library code : MWM
organ : Whole plant
library type : Normalized
vector : pBluescript II SK-
Accession Number : 5' end sequence:AV416849
Taxonomy : Lotus japonicus
Reference : Akashi T, Koshimizu S, Aoki T, Ayabe S. (2006) Identification of cDNAs encoding pterocarpan reductase involved in isoflavan phytoalexin biosynthesis in Lotus japonicus by EST mining. FEBS Lett 580(24) 5666-70
Lotus: pUB-GWS-GFP  Available Miyazaki University
Category: Vector
Lotus: pUB-GFP  Available Miyazaki University
Category: Vector
Accession Number : AB303068
Feature : pUB-GFP
detail : http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nuccore&id=170172475
Depositor : Makoto Hayashi
Developer : Makoto Hayashi
Amount : 200ng
Taxonomy : Lotus japonicus
Reference : Zhenpeng Luo, Jie-shun Lin, Yali Zhu, Mengdi Fu, Xiaolin Li, Fang Xie (2021) NLP1 reciprocally regulates nitrate inhibition of nodulation through SUNN-CRA2 signaling in Medicago truncatula Plant Communications 2 100183
Xiao A, Yu H, Fan Y, Kang H, Ren Y, Huang X, Gao X, Wang C, Zhang Z, Zhu H, Cao Y. (2020) Transcriptional regulation of NIN expression by IPN2 is required for root nodule symbiosis in Lotus japonicus. New Phytol 227(2) 513-528
Liu J, Liu MX, Qiu LP, Xie F. (2020) SPIKE1 Activates the GTPase ROP6 to Guide the Polarized Growth of Infection Threads in <i>Lotus japonicus</i>. Plant Cell 32(12) 3774-3791
Ru-Jie Li, Chun-Xiao Zhang, Sheng-Yao Fan, Yi-Han Wang, Jiangqi Wen, Kirankumar S. Mysore, Zhi-Ping Xie, Christian Staehelin (2022) The Medicago truncatula hydrolase MtCHIT5b degrades Nod factors of Sinorhizobium meliloti and cooperates with MtNFH1 to regulate the nodule symbiosis Frontiers in Plant Science 13
Zhenpeng Luo, Corentin Moreau, Jiang Wang, Florian Frugier, Fang Xie (2022) NLP1 binds the CEP1 signalling peptide promoter to repress its expression in response to nitrate New Phytologist 234 1547-1552
Yu Zhang, Yuan Fu, Wenfei Xian, Xiuli Li, Yong Feng, Fengjiao Bu, Yan Shi, Shiyu Chen, Robin van Velzen, Kai Battenberg, Alison M. Berry, Marco G. Salgado, Hui Liu, Tingshuang Yi, Pascale Fournier, Nicole Alloisio, Petar Pujic, Hasna Boubakri, M. Eric Schranz, Pierre-Marc Delaux, Gane Ka-Shu Wong, Valerie Hocher, Sergio Svistoonoff, Hassen Gherbi, Ertao Wang, Wouter Kohlen, Luis G. Wall, Martin Parniske, Katharina Pawlowski, Philippe Normand, Jeffrey J. Doyle, Shifeng Cheng (2024) Comparative phylogenomics and phylotranscriptomics provide insights into the genetic complexity of nitrogen-fixing root-nodule symbiosis Plant Communications 5 100671
Lotus: pUB-GW-GFP  Available Miyazaki University
Category: Vector
Lotus: LjFL3-013-AG11  Available Miyazaki University
Category: LjFLcDNA clones
organ : MG-20 (shoot or root), B-129 (suspension culture cells treated with or without yeast extract)
library type : Full length enriched
vector : pFLCIII (Sfi I, 4 bp Tag)
Accession Number : 5' end sequence:FS322418
Taxonomy : Lotus japonicus
Reference : Uchida K, Akashi T, Aoki T. (2017) The Missing Link in Leguminous Pterocarpan Biosynthesis is a Dirigent Domain-Containing Protein with Isoflavanol Dehydratase Activity. Plant Cell Physiol 58(2) 398-408