Bio Reaource World Home National BioResource Project Home
Japanese | English
Organism Category
Keyword
You can use "*" for a wildcard search.
  >   Resource Information
Tabs(ALL, DNA, BLAST, GO, Taxonomy, DO, Reference) are clickable.
DNA
BLAST
Gene Ontology
Taxonomy
Disease Ontology
Reference
Resource count: 6,594,866

Resource Information Gifu B-129

Resource Information
Organism Lotus
strain or clone Strain
Category Experimental strains
Resource name Gifu B-129
Availability Available
Features
Taxonomy : Lotus japonicus
Reference : Ampomah OY, Jensen JB. (2014) The trehalose utilization gene thuA ortholog in Mesorhizobium loti does not influence competitiveness for nodulation on Lotus spp. World J Microbiol Biotechnol 30(3) 1129-34
Masaru Bamba, Seishiro Aoki, Tadashi Kajita, Hiroaki Setoguchi, Yasuyuki Watano, Shusei Sato, Takashi Tsuchimatsu (2020) Massive rhizobial genomic variation associated with partner quality in Lotus–Mesorhizobium symbiosis FEMS Microbiology Ecology 96
澤田有司 () マメ科植物の代謝システム解明を目指した質量分析プラットフォームの構築 大豆たん白質研究 13 139-144
Ng JLP, Welvaert A, Wen J, Chen R, Mathesius U. (2020) The Medicago truncatula PIN2 auxin transporter mediates basipetal auxin transport but is not necessary for nodulation. J Exp Bot 71(4) 1562-1573
Vittozzi Y, Nadzieja M, Rogato A, Radutoiu S, Valkov VT, Chiurazzi M. (2021) The <i>Lotus japonicus NPF3.1</i> Is a Nodule-Induced Gene That Plays a Positive Role in Nodule Functioning. Front Plant Sci 12 688187
Xu Y, Liu F, Wu F, Zhao M, Zou R, Wu J, Li X. (2022) A novel SCARECROW-LIKE3 transcription factor <i>LjGRAS36</i> in <i>Lotus japonicus</i> regulates the development of arbuscular mycorrhizal symbiosis. Physiol Mol Biol Plants 28(3) 573-583
Fukudome M, Shimokawa Y, Hashimoto S, Maesako Y, Uchi-Fukudome N, Niihara K, Osuki KI, Uchiumi T. (2021) Nitric Oxide Detoxification by Mesorhizobium loti Affects Root Nodule Symbiosis with Lotus japonicus. Microbes Environ 36(3)
Lin J, Roswanjaya YP, Kohlen W, Stougaard J, Reid D. (2021) Nitrate restricts nodule organogenesis through inhibition of cytokinin biosynthesis in Lotus japonicus. Nat Commun 12(1) 6544
Venice F, Chialva M, Domingo G, Novero M, Carpentieri A, Salvioli di Fossalunga A, Ghignone S, Amoresano A, Vannini C, Lanfranco L, Bonfante P. (2021) Symbiotic responses of Lotus japonicus to two isogenic lines of a mycorrhizal fungus differing in the presence/absence of an endobacterium. Plant J 108(6) 1547-1564
Fuentes-Romero F, Navarro-Gómez P, Ayala-García P, Moyano-Bravo I, López-Baena FJ, Pérez-Montaño F, Ollero-Márquez FJ, Acosta-Jurado S, Vinardell JM. (2022) The <i>nodD1</i> Gene of <i>Sinorhizobium fredii</i> HH103 Restores Nodulation Capacity on Bean in a <i>Rhizobium tropici</i> CIAT 899 <i>nodD1</i>/<i>nodD2</i> Mutant, but the Secondary Symbiotic Regulators <i>nolR</i>, <i>nodD2</i> or <i>syrM</i> Prevent HH103 to Nodulate with This Legume. Microorganisms 10(1)
Crosbie DB, Mahmoudi M, Radl V, Brachmann A, Schloter M, Kemen E, Marín M. (2022) Microbiome profiling reveals that Pseudomonas antagonises parasitic nodule colonisation of cheater rhizobia in Lotus. New Phytol 234(1) 242-255
Gong X, Jensen E, Bucerius S, Parniske M. (2022) A CCaMK/Cyclops response element in the promoter of Lotus japonicus calcium-binding protein 1 (CBP1) mediates transcriptional activation in root symbioses. New Phytol 235(3) 1196-1211
Handa Y, Nishide H, Takeda N, Suzuki Y, Kawaguchi M, Saito K. (2015) RNA-seq Transcriptional Profiling of an Arbuscular Mycorrhiza Provides Insights into Regulated and Coordinated Gene Expression in Lotus japonicus and Rhizophagus irregularis. Plant Cell Physiol 56(8) 1490-511
Fukai E, Yoshikawa M, Shah N, Sandal N, Miyao A, Ono S, Hirakawa H, Akyol TY, Umehara Y, Nonomura KI, Stougaard J, Hirochika H, Hayashi M, Sato S, Andersen SU, Okazaki K. (2022) Widespread and transgenerational retrotransposon activation in inter- and intraspecies recombinant inbred populations of Lotus japonicus. Plant J 111(5) 1397-1410
Yusaku Noda, Jun Furukawa, Nobuo Suzui, Yong-Gen Yin, Keita Matsuoka, Naoki Kawachi, Shinobu Satoh (2022) Characterization of zinc uptake and translocation visualized with positron-emitting 65Zn tracer and analysis of transport-related gene expression in two <i>Lotus japonicus</i> accessions Annals of Botany
Madsen LH, Fukai E, Radutoiu S, Yost CK, Sandal N, Schauser L, Stougaard J. (2005) LORE1, an active low-copy-number TY3-gypsy retrotransposon family in the model legume Lotus japonicus. Plant J 44(3) 372-81
Akashi T, Koshimizu S, Aoki T, Ayabe S. (2006) Identification of cDNAs encoding pterocarpan reductase involved in isoflavan phytoalexin biosynthesis in Lotus japonicus by EST mining. FEBS Lett 580(24) 5666-70
Hanyu M, Fujimoto H, Tejima K, Saeki K. (2009) Functional differences of two distinct catalases in Mesorhizobium loti MAFF303099 under free-living and symbiotic conditions. J Bacteriol 191(5) 1463-71
Ono N, Ishida K, Yamashino T, Nakanishi H, Sato S, Tabata S, Mizuno T. (2010) Genomewide characterization of the light-responsive and clock-controlled output pathways in Lotus japonicus with special emphasis of its uniqueness. Plant Cell Physiol 51(10) 1800-14
Sugiyama A, Linley PJ, Sasaki K, Kumano T, Yamamoto H, Shitan N, Ohara K, Takanashi K, Harada E, Hasegawa H, Terakawa T, Kuzuyama T, Yazaki K. (2011) Metabolic engineering for the production of prenylated polyphenols in transgenic legume plants using bacterial and plant prenyltransferases. Metab Eng 13(6) 629-37
Gossmann JA, Markmann K, Brachmann A, Rose LE, Parniske M. (2012) Polymorphic infection and organogenesis patterns induced by a Rhizobium leguminosarum isolate from Lotus root nodules are determined by the host genotype. New Phytol 196(2) 561-573
Bunsupa S, Katayama K, Ikeura E, Oikawa A, Toyooka K, Saito K, Yamazaki M. (2012) Lysine decarboxylase catalyzes the first step of quinolizidine alkaloid biosynthesis and coevolved with alkaloid production in leguminosae. Plant Cell 24(3) 1202-16
Fukudome M, Calvo-Begueria L, Kado T, Osuki K, Rubio MC, Murakami E, Nagata M, Kucho K, Sandal N, Stougaard J, Becana M, Uchiumi T. (2016) Hemoglobin LjGlb1-1 is involved in nodulation and regulates the level of nitric oxide in the Lotus japonicus-Mesorhizobium loti symbiosis. J Exp Bot 67(17) 5275-83
Jiménez-Guerrero I, Acosta-Jurado S, Medina C, Ollero FJ, Alias-Villegas C, Vinardell JM, Pérez-Montaño F, López-Baena FJ. (2020) The Sinorhizobium fredii HH103 type III secretion system effector NopC blocks nodulation with Lotus japonicus Gifu. J Exp Bot 71(19) 6043-6056
Liu M, Jia N, Li X, Liu R, Xie Q, Murray JD, Downie JA, Xie F. (2021) CERBERUS is critical for stabilization of VAPYRIN during rhizobial infection in Lotus japonicus. New Phytol 229(3) 1684-1700
Carbonnel S, Torabi S, Gutjahr C. (2021) <i>MAX2</i>-independent transcriptional responses to <i>rac-</i>GR24 in <i>Lotus japonicus</i> roots. Plant Signal Behav 16(1) 1840852
Akamatsu A, Nagae M, Nishimura Y, Romero Montero D, Ninomiya S, Kojima M, Takebayashi Y, Sakakibara H, Kawaguchi M, Takeda N. (2021) Endogenous gibberellins affect root nodule symbiosis via transcriptional regulation of NODULE INCEPTION in Lotus japonicus. Plant J 105(6) 1507-1520
Rae AE, Rolland V, White RG, Mathesius U. (2021) New methods for confocal imaging of infection threads in crop and model legumes. Plant Methods 17(1) 24
Villar I, Rubio MC, Calvo-Begueria L, Pérez-Rontomé C, Larrainzar E, Wilson MT, Sandal N, Mur LA, Wang L, Reeder B, Duanmu D, Uchiumi T, Stougaard J, Becana M. (2021) Three classes of hemoglobins are required for optimal vegetative and reproductive growth of Lotus japonicus: genetic and biochemical characterization of LjGlb2-1. J Exp Bot 72(22) 7778-7791
Nieva AS, Romero FM, Erban A, Carrasco P, Ruiz OA, Kopka J. (2021) Metabolic Profiling and Metabolite Correlation Network Analysis Reveal That <i>Fusarium solani</i> Induces Differential Metabolic Responses in <i>Lotus japonicus</i> and <i>Lotus tenuis</i> against Severe Phosphate Starvation. J Fungi (Basel) 7(9)
Du Y, Luo S, Zhao J, Feng Z, Chen X, Ren W, Liu X, Wang Z, Yu L, Li W, Qu Y, Liu J, Zhou L. (2021) Genome and transcriptome-based characterization of high energy carbon-ion beam irradiation induced delayed flower senescence mutant in Lotus japonicus. BMC Plant Biol 21(1) 510
Akamatsu A, Nagae M, Takeda N. (2022) The <i>CYCLOPS Response Element</i> in the <i>NIN</i> Promoter Is Important but Not Essential for Infection Thread Formation During <i>Lotus japonicus-</i>Rhizobia Symbiosis. Mol Plant Microbe Interact 35(8) 650-658
Chai Hao Chiu, Pawel Roszak, Martina Orvošová, Uta Paszkowski (2022) Arbuscular mycorrhizal fungi induce lateral root development in angiosperms via a conserved set of MAMP receptors Current Biology 32 4428-4437.e3
Hafijur Ruman, Yasuyuki Kawaharada (2022) A New Classification of Lysin Motif Receptor-Like Kinases in <i>Lotus japonicus</i> Plant and Cell Physiology
Mohammad Zarrabian, Jesús Montiel, Niels Sandal, Shaun Ferguson, Haojie Jin, Yen-Yu Lin, Verena Klingl, Macarena Marín, Euan K. James, Martin Parniske, Jens Stougaard, Stig U. Andersen (2022) A Promiscuity Locus Confers <i>Lotus burttii</i> Nodulation with Rhizobia from Five Different Genera Molecular Plant-Microbe Interactions® 35 1006-1017
Yusdar Mustamin, Turgut Yigit Akyol, Max Gordon, Andi Madihah Manggabarani, Yoshiko Isomura, Yasuko Kawamura, Masaru Bamba, Cranos Williams, Stig Uggerhøj Andersen, Shusei Sato (2023) <i>FER</i> and <i>LecRK</i> show haplotype-dependent cold-responsiveness and mediate freezing tolerance in <i>Lotus japonicus</i> Plant Physiology 191 1138-1152
Mingchao Huang, Mengru Yuan, Chunyu Sun, Meiru Li, Pingzhi Wu, Huawu Jiang, Guojiang Wu, Yaping Chen (2022) Roles of AGD2a in Plant Development and Microbial Interactions of Lotus japonicus International Journal of Molecular Sciences 23 6863
Akihiro Yamazaki, Kai Battenberg, Yoshikazu Shimoda, Makoto Hayashi (2022) NDR1/HIN1-Like Protein 13 Interacts with Symbiotic Receptor Kinases and Regulates Nodulation in <i>Lotus japonicus</i> Molecular Plant-Microbe Interactions® 35 845-856
Xiaolin Li, Miaoxia Liu, Min Cai, David Chiasson, Martin Groth, Anne B. Heckmann, Trevor L. Wang, Martin Parniske, J. Allan Downie, Fang Xie (2023) RPG interacts with E3-ligase CERBERUS to mediate rhizobial infection in Lotus japonicus PLOS Genetics 19 e1010621
Mun T, Małolepszy A, Sandal N, Stougaard J, Andersen SU. (2017) User Guide for the LORE1 Insertion Mutant Resource. Methods Mol Biol 1610 13-23
Imaizumi R, Sato S, Kameya N, Nakamura I, Nakamura Y, Tabata S, Ayabe S, Aoki T. (2005) Activation tagging approach in a model legume, Lotus japonicus. J Plant Res 118(6) 391-9
Unno Y, Okubo K, Wasaki J, Shinano T, Osaki M. (2005) Plant growth promotion abilities and microscale bacterial dynamics in the rhizosphere of Lupin analysed by phytate utilization ability. Environ Microbiol 7(3) 396-404
Sebastián Acosta-Jurado, Dulce-Nombre Rodríguez-Navarro, Yasuyuki Kawaharada, Miguel A. Rodríguez-Carvajal, Antonio Gil-Serrano, María E. Soria-Díaz, Francisco Pérez-Montaño, Juan Fernández-Perea, Yanbo Niu, Cynthia Alias-Villegas, Irene Jiménez-Guerrero, Pilar Navarro-Gómez, Francisco Javier López-Baena, Simon Kelly, Niels Sandal, Jens Stougaard, José E. Ruiz-Sainz, and José-María Vinardell () Sinorhizobium fredii HH103 nolR and nodD2 mutants gain capacity for infection thread invasion of Lotus japonicus Gifu and Lotus burttii Environmental Microbiology 21(5) 1718–1739
Günther C, Schlereth A, Udvardi M, Ott T. (2007) Metabolism of reactive oxygen species is attenuated in leghemoglobin-deficient nodules of Lotus japonicus. Mol Plant Microbe Interact 20(12) 1596-603
Fukai E, Dobrowolska AD, Madsen LH, Madsen EB, Umehara Y, Kouchi H, Hirochika H, Stougaard J. (2008) Transposition of a 600 thousand-year-old LTR retrotransposon in the model legume Lotus japonicus. Plant Mol Biol 68(6) 653-63
Maekawa-Yoshikawa M, Müller J, Takeda N, Maekawa T, Sato S, Tabata S, Perry J, Wang TL, Groth M, Brachmann A, Parniske M. (2009) The temperature-sensitive brush mutant of the legume Lotus japonicus reveals a link between root development and nodule infection by rhizobia. Plant Physiol 149(4) 1785-96
Saito S, Motawia MS, Olsen CE, Møller BL, Bak S. (2012) Biosynthesis of rhodiocyanosides in Lotus japonicus: rhodiocyanoside A is synthesized from (Z)-2-methylbutanaloxime via 2-methyl-2-butenenitrile. Phytochemistry 77 260-7
Sugimura Y, Saito K. (2017) Transcriptional profiling of arbuscular mycorrhizal roots exposed to high levels of phosphate reveals the repression of cell cycle-related genes and secreted protein genes in Rhizophagus irregularis. Mycorrhiza 27(2) 139-146
Kusakabe S, Higasitani N, Kaneko T, Yasuda M, Miwa H, Okazaki S, Saeki K, Higashitani A, Sato S. (2020) Lotus Accessions Possess Multiple Checkpoints Triggered by Different Type III Secretion System Effectors of the Wide-Host-Range Symbiont Bradyrhizobium elkanii USDA61. Microbes Environ 35(1)
Kawaguchi M, Imaizumi-Anraku H, Koiwa H, Niwa S, Ikuta A, Syono K, Akao S. (2002) Root, root hair, and symbiotic mutants of the model legume Lotus japonicus. Mol Plant Microbe Interact 15(1) 17-26
Nishimura R, Hayashi M, Wu GJ, Kouchi H, Imaizumi-Anraku H, Murakami Y, Kawasaki S, Akao S, Ohmori M, Nagasawa M, Harada K, Kawaguchi M. (2002) HAR1 mediates systemic regulation of symbiotic organ development. Nature 420(6914) 426-9
Asamizu E, Nakamura Y, Sato S, Tabata S. (2004) Characteristics of the Lotus japonicus gene repertoire deduced from large-scale expressed sequence tag (EST) analysis. Plant Mol Biol 54(3) 405-14
Imaizumi-Anraku H, Takeda N, Charpentier M, Perry J, Miwa H, Umehara Y, Kouchi H, Murakami Y, Mulder L, Vickers K, Pike J, Downie JA, Wang T, Sato S, Asamizu E, Tabata S, Yoshikawa M, Murooka Y, Wu GJ, Kawaguchi M, Kawasaki S, Parniske M, Hayashi M. (2005) Plastid proteins crucial for symbiotic fungal and bacterial entry into plant roots. Nature 433(7025) 527-31
Holligan D, Zhang X, Jiang N, Pritham EJ, Wessler SR. (2006) The transposable element landscape of the model legume Lotus japonicus. Genetics 174(4) 2215-28
Udvardi MK, Tabata S, Parniske M, Stougaard J. (2005) Lotus japonicus: legume research in the fast lane. Trends Plant Sci 10(5) 222-8
Sandal N, Petersen TR, Murray J, Umehara Y, Karas B, Yano K, Kumagai H, Yoshikawa M, Saito K, Hayashi M, Murakami Y, Wang X, Hakoyama T, Imaizumi-Anraku H, Sato S, Kato T, Chen W, Hossain MS, Shibata S, Wang TL, Yokota K, Larsen K, Kanamori N, Madsen E, Radutoiu S, Madsen LH, Radu TG, Krusell L, Ooki Y, Banba M, Betti M, Rispail N, Skøt L, Tuck E, Perry J, Yoshida S, Vickers K, Pike J, Mulder L, Charpentier M, Müller J, Ohtomo R, Kojima T, Ando S, Marquez AJ, Gresshoff PM, Harada K, Webb J, Hata S, Suganuma N, Kouchi H, Kawasaki S, Tabata S, Hayashi M, Parniske M, Szczyglowski K, Kawaguchi M, Stougaard J. (2006) Genetics of symbiosis in Lotus japonicus: recombinant inbred lines, comparative genetic maps, and map position of 35 symbiotic loci. Mol Plant Microbe Interact 19(1) 80-91
Feng X, Zhao Z, Tian Z, Xu S, Luo Y, Cai Z, Wang Y, Yang J, Wang Z, Weng L, Chen J, Zheng L, Guo X, Luo J, Sato S, Tabata S, Ma W, Cao X, Hu X, Sun C, Luo D. (2006) Control of petal shape and floral zygomorphy in Lotus japonicus. Proc Natl Acad Sci U S A 103(13) 4970-5
Asamizu E, Shimoda Y, Kouchi H, Tabata S, Sato S. (2008) A positive regulatory role for LjERF1 in the nodulation process is revealed by systematic analysis of nodule-associated transcription factors of Lotus japonicus. Plant Physiol 147(4) 2030-40
Kai K, Wakasa K, Miyagawa H. (2007) Metabolism of indole-3-acetic acid in rice: identification and characterization of N-beta-D-glucopyranosyl indole-3-acetic acid and its conjugates. Phytochemistry 68(20) 2512-22
Wang X, Sato S, Tabata S, Kawasaki S. (2008) A high-density linkage map of Lotus japonicus based on AFLP and SSR markers. DNA Res 15(5) 323-32
Masahiro Okada, Sungwook Park, Takahiro Koshizawa and Minoru Ueda. (2009) (R)-Eucomic acid, a leaf-opening factor of the model organism, Lotus japonicus. Tetrahedron 65 2136-2141
S. Okazaki, S. Okabe, M. Higashi, Y. Shimoda, S. Sato, S. Tabata, M. Hashiguchi, R. Akashi and K. Saeki. (2009) Identification and functional analysis of type III effector proteins in Mesorhizobium loti. Molecular Plant-Microbe Interaction
Hakoyama T, Watanabe H, Tomita J, Yamamoto A, Sato S, Mori Y, Kouchi H, Suganuma N. (2009) Nicotianamine synthase specifically expressed in root nodules of Lotus japonicus. Planta 230(2) 309-17
Maruya J, Saeki K. (2010) The bacA gene homolog, mlr7400, in Mesorhizobium loti MAFF303099 is dispensable for symbiosis with Lotus japonicus but partially capable of supporting the symbiotic function of bacA in Sinorhizobium meliloti. Plant Cell Physiol 51(9) 1443-52
Kai S, Tanaka H, Hashiguchi M, Iwata H, Akashi R (2010) Analysis of genetic diversity and morphological traits of Japanese Lotus japonicus for establishment of a core collection Breed Sci. 60(4) 436-446
Masatsugu Hashiguchi, Shin-ichi Tsuruta, Ryo Akashi (2011) Morphological Traits of Lotus japonicus (Regal) Ecotypes Collected in Japan IBC 3(4) 1-7
Borjigin N, Furukawa K, Shimoda Y, Tabata S, Sato S, Eda S, Minamisawa K, Mitsui H. (2011) Identification of Mesorhizobium loti genes relevant to symbiosis by using signature-tagged mutants. Microbes Environ 26(2) 165-71
Amin AN, Hayashi S, Bartlem DG. (2014) Robust in vitro assay system for quantitative analysis of parasitic root-knot nematode infestation using Lotus japonicus. J Biosci Bioeng 118(2) 205-13
Makiko Mimura (2013) Genetic and phenotypic variation in Lotus japonicus (Regel) K. Larsen, a model legume species Canadian Journal of Plant Science Vol. 93, No. 3 435-444
Kojima T, Saito K, Oba H, Yoshida Y, Terasawa J, Umehara Y, Suganuma N, Kawaguchi M, Ohtomo R. (2014) Isolation and phenotypic characterization of Lotus japonicus mutants specifically defective in arbuscular mycorrhizal formation. Plant Cell Physiol 55(5) 928-41
Hideki Hirakawa, Terry Mun, Shusei Sato, Stig U. Andersen (2014) Legume and Lotus japonicus Databases The Lotus japonicus Genome IV 259-267
Hidenori Tanaka, Awatsaya Chotekajorn, Sayumi Kai, Genki Ishigaki, Masatsugu Hashiguchi, Ryo Akashi (2016) Determination of Genome Size, Chromosome Number, and Genetic Variation Using Inter-Simple Sequence Repeat Markers in Lotus spp. Cytologia 81(1) 95-102
Tsuno Y, Fujimatsu T, Endo K, Sugiyama A, Yazaki K. (2018) Soyasaponins: A New Class of Root Exudates in Soybean (Glycine max). Plant Cell Physiol 59(2) 366-375
Kunihiro S, Tanabe D, Niwa Y, Kitamura K, Abe J, Yamada T. (2017) Isolation and molecular characterization of a <i>Lotus japonicus</i><i>R2R3-MYB</i> subgroup 7 transcription factor gene. Plant Biotechnol (Tokyo) 34(1) 45-49
Resouce detail information
(request form)
http://www.legumebase.brc.miyazaki-u.ac.jp/experimentalStrainBrowseAction.do

Distributors information
Organization Faculty of Agriculture, University of Miyazaki
Person in charge AKASHI Ryo
Postal Code 889-2192
Address 1-1. Gakuen-Kibanadai-Nishi. Miyazaki
Phone 0985-58-7112
FAX 0985-58-7104
E-mail legume@brc.miyazaki-u.ac.jp
URL https://www.brc.miyazaki-u.ac.jp/
Other information